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Effective Bloch Equations for
Semiconductor Lasers and Amplifiers

C. Z. Ning, R. A. Indik, and J. V. Moloney

Abstract—A set of effective Bloch equations is established the nonlinear optical response function can adapt on the fly to
for semiconductor bulk or quantum-well media. The model in- |ocal density and intensity changes within the structure. The

cludes the nonlinear carrier-density dependence of the gain and |54ar optical response could be derived from a first principles
refractive index and their respective dispersions (frequency de- . . .

pendences). A comparative study is performed between the full mICI’OSCOpI(_: theorY or m_easu_red experlmenFaIIy.

microscopic semiconductor Bloch equations and this effective [N modeling or simulating high-power semiconductor lasers
model for pulse propagation to show the range of validity of or amplifiers, it is essential to capture those features of the
the present model. The results show that this model agrees well semiconductor (quantum well or bulk) lasers mentioned above:
with the microscopic model provided carrier depletion is the the large gain bandwidth and the large density variations. The
dominant saturation mechanism relative to the plasma heating. . . .

The effective Bloch equations provide an accurate and practical phenomenologlcal rate equations _used for semiconductor laser
model for modeling amplifiers with pulses of duration greater Modeling, however, do not contain these features. The more
than a few picoseconds. By capturing the large bandwidth and the complete theory at the microscopic level is computationally
carrier density dependence of the gain, it also provides a reliable too expensive to be used. An alternative beyond these two

model for studying the complex spatiotemporal multilongitudinal — osices is needed for efficient and accurate modeling. There
and transverse mode dynamics of a variety of wide-aperture dels in the literat 61-1111 which includ
high-power semiconductor lasers. The model goes beyond the@'® SOMeE MOCEIS In he literature [6]-{11] which include

traditional rate equations and is computationally much more gain dispersion. However, we feel that the approach that we
efficient to simulate than the full model. will present in this paper is preferable. As we will discuss
Index Terms—Gain and index dispersion of semiconductors, in detail in thg following sect_ions, ogr approach is (_jerived

many-body effects, nonlinear optical gain, semiconductor ampli- from the detailed microscopic semiconductor physics and
fiers, semiconductor laser modeling and simulation. uses more fundamental parameters, like material concentration
and quantum-well (QW) structure parameters. In addition,
the density as well as the frequency dependence of the
susceptibility is built into our model.

HE VERY LARGE gain bandwidth and its nonlinear This paper is organized as follows. In the second section, we

dependence on carrier density of inverted semiconduct§ive a detailed account of the background for our approach by
media provides both technological opportunities and fundgsviewing the current approaches based on rate equations and
mental modeling challenges. In a semiconductor amplifier, fficroscopic theory. The calculation of the gain and refractive
example, the carrier density undergoes very large excursigigex from the microscopic theory is then outlined in Section
in magnitude as an initially weak injected pulse grows out ofj@. This is followed by the approximation of the gain and
noisy background and the corresponding optical susceptibiliplex and the establishment of our model in Section IV. In
function may fluctuate strongly in shape and magnitude. Bection V, we apply our model to pulse propagation, where we
semiconductor diode lasers, the large gain bandwidth cauggmmpare the results of the current model with the microscopic
the laser to typically run in multiple longitudinal modesheory. In Section VI, we compare the current model with other
unless precautions are taken to suppress the latter by spfigdels that have been proposed [6]-[11]. In the last section,
tral filtering using, e.g., Bragg gratings. Wide-aperture higlwye summarize the main results of this paper and point out
brightness laser sources offer even greater challenges leagiggsible extension for the future research.
to multilongitudinal/transverse mode dynamics, dynamic in-
tensity filamentation, and strongly nonuniform carrier density II. MOTIVATION AND BACKGROUND

fluctuations both along, and transverse to, the laser structure, . . o
One would like to have a robust modeling scheme in which Rate equations [12]-[14] or their static simplification, the

eam propagation model [15], [16] are most widely used
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Materiel Command, USAF, under Contract AFOSR F 49620-94-1-0144 DEfpean extensively reviewed elsewhere [15] [16] [14]_ The
and Contract AFOSR F49620-94-1-0463 DEF. " . ’ o
C. Z. Ning was with the Arizona Center for Mathematical Scienceé,radmor‘al rate equations refer to the set of equations for

University of Arizona, Tucson, AZ 85721 USA. He is now with the NASAphoton and carrier densities, but here we use this terminology

I. INTRODUCTION

Ames Research Center, Moffett Field, CA 94035-1000 USA. _also for the set of equations for complex field amplitude (not
R. A. Indik and J. V. Moloney are with the Arizona Center for Mathematical . . . . . .

Sciences, University of Arizona, Tucson, AZ 85721 USA. intensity or phot_on density) coupled with carrier density with
Publisher Item Identifier S 0018-9197(97)06224-6. a linear gain or index change [14]. The advantage of the rate

0018-9197/97$10.0Q1 1997 IEEE



1544 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 9, SEPTEMBER 1997

equations lies in their conceptual simplicity. In addition, rate
equations are very easy to simulate and can capture many of
the important features of laser operation.

There are, however, several issues that are especially rel-
evant for broad-area high-power lasers and amplifiers and
that are not addressed by simple rate equations. First, as is
well known, both gain and index are in general nonlinear

G (X10%cm)

functions of carrier density, but the rate equation approach -1k . g
uses linearized gain and index around the transparency or -10 0 10 20
the threshold density. For lasers operating near threshold, this Detuning (THz)

is not a problem since the carrier density is clamped to its @

threshold value. However, the linear gain/index approxima-
tion becomes questionable for broad-area lasers, where there
is a significant lateral density change [18]-[21], associated
with the complex lateral mode structure [17], and for the
monolithical MOPA where longitudinal density changes along
the structure are important [24]. Another striking example
involving dramatic density change is the formation of the

complex transverse mode structures in large aperture vertical- 0.08k ‘ ‘ ]
cavity surface-emitting lasers [1]—[3]. In these devices, there is -10 0 10 20
an associated transverse spatial hole burning with significant Detuning (THz)
density variations. In all these structures the carrier density (b)

changes are so significant that a linearization of the gain ang 1. (a) Gain and (b) carrier-density induced index change for GaAs bulk

index around any particular density becomes invalid. In [20hedium. The detuning is given in = w‘/i’sﬂ-l The carrier densities are 2
the consequences of this linearization were demonstrated; By ™ 3 10°® cm3, and 4x 10°% cm™?, respectively. The dashed
lineés are calculated from the microscopic theory directly, while the solid lines

comparing the linearized gain and the nonlinear gain. It Wag fitted by a single Lorentzian plus the background contribution.
found that the gain at the lateral edges of the laser (and

therefore the beam extent) is overestimated using the linearized, . . . o .
) 9 contain, in addition to the intrinsic complexity of the many-

gain. In addition inaccurate carrier-induced index profiles Ie%% dy physics involved, time scales from nanoseconds down

to poor prediction of lateral beam filamentation. X : . .
b prea . . 10 ,50-100 fs [4]. As a result, numerical simulations using
Second, in the rate equations, a frequency independent’. . . LS
exﬁfllcn schemes must use very small time steps, while implicit

gain and index are used, which means that actual gain an ) )
L R . schemes amount to solving very large systems of equations.
refractive index spectra with given curvatures (see Fig. 1) aré ; . ;
, : . ._7.”On the other hand, we require at least a total simulation
replaced by frequency independent straight lines. This is_a

. L ; time well in excess of nanoseconds to study the spatial-
valid approximation for a single-mode laser. For broad-area ) :

.. .femporal dynamics. The electronic wavevector dependence of

lasers, MOPA structures, and large aperture surface-emitt

1] 7 R .
. o c;[h% polarizations and distribution functions makes the problem
lasers, multiple longitudinal modes or complex lateral mode

structures appear [1}-[3], [18], [19], [21]. In these casedne dimension larger than the usual laser equations for a
Similar geometry.

each mode sees different gain (and index) depending on thelli’here is a related issue that makes the computation more

locations in the gain/index spectra. Even small differences in ; ; .
i s ) . : expensive for semiconductor lasers. As we mentioned above,
gain for the individual modes will have an important influenc

. L the gain bandwidth for semiconductor lasers is typically very
on the final laser output. Thus gain discrimination is veny, . : . .
critical. rge, so that the gain spectrum is quite flat, as we will

Finally, it has been shown mathematically that the ra{eemphasme later in this paper. This means that the gain discrim-

. o : . . .“Ination for adjacent modes is very small, leading to the very
equations with diffraction term included are ill-posed, showin mall difference in the decav or arowth rates of neiahborin
very different behavior of instabilities [22] from the full y org 9 9

Maxwell-Bloch model with polarization included. The numer[mdes' This again requires that the cpmputatmn time has to
: be long enough to make a final determination of the long-term

ical evidence of this ill-posedness is an instability at gnd—scalg, ; . : .
. ; : L o Ynamical behavior of the lasers, as a result of the neighboring
which might be mistaken for a numerical instability. rr% de competition

The above-mentioned issues are adequately addressed in 0 study the spatial mode structure and lateral filamenta-

full microscopic model [4], [5], known as the SemlconductO{ion' we need to solve the corresponding partial differential

Bloch Equations (SBE's), as we will briefly show in SeCt'or(]aquations at the microscopic level [18], [19]. The addition

E:L'J(;Lhdehr;c;%s;xr?'%etzi?g \:\gtehmr:r?tn\)//v_i?r? de)>/< 'gtr?r;a;;';n;]m' the spatial resolution in lateral and/or transverse direction
e . 9 PS ' B the laser device, coupled with small time steps and long
for describing optical responses of the semiconductor bulk

and QW media than the free-carrier counterpart. The probleni!t is to be noted that’; ~ Aw = 2rAw for a Lorentzian oscilator.
sually Av rather thanAw is used as a measure of the gain bandwidth. A

with th_e fu!l microscopic theory in des_crib_ing Spatial'temporqlfme constant of 5 fs foil /"1 corresponds to a gain bandwidth & = 30
dynamics is the formidable computation involved. The SBE'&Hz.
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computation time, makes the whole problem almost impossilitee intensity gainG), the carrier-induced index changén),
to simulate, even with today’s ever increasing computationahd the susceptibilityx(V,w)) are expressed in the form [4]
capability. : 9

From what has been said above, it is clear that a model for  x(N,w) = —EG(N,w) + —én(N,w)
semiconductor lasers is needed which satisfies the following 2””
criteria. It must adequately address the issues of carrier density _ ! Z Jpar| (fevk + frr =1 Qr (3
dependence and of the dispersion of gain and refractive index oV £~ 1h +ib(wy — we — w)
angL}/re;;Zr%ighc?smtﬁnitigﬁg\?vlilzgm?:r;?gaeE;;lji\l/eén QW or bu”é/vhere we assume that carriers obey Fermi—Dirac statistics with

epitaxial structure, we calculate the gain and index (suscggﬁmbu“on functions/ . and /.« characterized by a total

tibility) spectra using the microscopic theory for a rang ensity N = (1/V)Xy fer = (1/V)Er fun and plasma
: - . emperaturel;,. As a result, the gain and index depend only
of carrier densities, typically, from below transparency u ?
) . n total density, frequency, and plasma temperature. In (3)
to several times the laser threshold. For each density, .
. - L . is the so-called Coulomb enhancement factor [4], [5].
parameterize the susceptibility spectrum by approximating t Jc is the optical wavevector in the medium of
spectrum as a superposition of several Lorentzians. The qu Qék rccd)ﬂbd cindem wFi)th being the speed of light in the
tities characterizing the individual Lorentzians then act as our 9 b ¢ being pee 9 i
. . vacuum. Other parameters in (3) are defined as followys:
parameters. These parameters are functions of carrier densi N . : .
: ande, = n; are the dielectric constant in the vacuum and the
(and temperature). In this way, the relevant frequency an

density dependence are retained. Using these parameter{g??t've dielectric constant of the medium, respectively. Many-

Lorentzians, we construct a set of equations which satis pdy effects manifest themselves in two ways in the above

the criteria mentioned above. In the simple case of a Si:Epression. The individual transition frequency (denoted by

above) is “renormalized” by the Coulomb interaction [4],
] and the dipole transitions are modified by the Coulomb
enhancement factap; (see [4] and [5]).

Our consideration is quite general and is applicable to
both QW structures and bulk medium. The indexn the
summation of (3) contains spin index and in the case of the
QW structure, also the confined band indices, in which case,

Our starting point is the microscopic many-body theorthe k& should be understood as the wavevector in the plane of
under the Hartree—Fock approximation [4], [5]. For the plasnthe QW layer. In the case of the QW, we must first calculate
screening, we use a single plasmon-pole model [5]. The thedine confined bands and the bandstructure for all the confined
leads to the following SBE's [4], [5] for carrier distributionvalence bands.

Lorentzian approximation, the set of equations is formally ve
similar to the Bloch equations for two level atoms, thus
call our model effective Bloch equations (EBE’s).

I1l. GAIN AND INDEX CALCULATION
FROM THE MICROSCOPICTHEORY

functionsn,, ;. and the envelope polarization variables The first step to construct our model is to parameterize the
. . . gain and index as calculated using the microscopic theory. To
P = = + (W — wo)lpr — i begin with, we fix the plasma temperatufg as a constant in
“(Nek +nnp — 1) (1) the present model. The susceptibility is therefore a function
Mg =Nak = Tnlak — Y1 (Pak = fak) of two variables: densityV and frequencyw. Generally, we
i require that the susceptibility(V,w) calculated through (3)
+ Z(Qk * pr, — Qb)) a=c¢h ) for a given laser structure be approximated by superposition

of several Lorentzians, namely,
wherew,., v2, 1, and+y,, are the reference frequency, dephas-

ing rate of the polarization, carrier equilibration rate, and M Ai(N)
. . N ~volN l
carrier loss rate due to spontaneous and nonradiative processesX (V,w) = xo(N) + Z T/ (N + (6 —&(N
. , SIVE iLi(N) + (60 +w — &(IV))
respectively. The\, ;’s are the pumping rate to individuél !

state. Thew's in (1) and (2) are the renormalized transition M
frequency for each individual transition at electron wave vector =Xo(N) + Z xi(w; N) 4)
k: hwy = Eep + Enp + £y + ARy, with Ee i, and Ey t
being the conduction band and valence band single partigiberey (N, w) is given by (3), and we also include a “back-
energies, respectively, arig, the bare bandgap. The bandgaground” contribution xo(XN) which is frequency indepen-
shrinkage due to many-body interactiond;, is a density- dent. In (4), we use a detuning parametés: = w. —
dependent function [4]. Thé2,'s are the generalized RabiE,/fi. Note that we allow the density dependence of the
frequency including the “internal field” due to the CoulomBparameters” A4;(N),T';(N), and &(N) for the individual
interactions:Q = (ux/R)E + (1/h) S 21 Vie—w|pw- £ is  Lorentzian oscillators. In general, we expect to approximate
the complex laser field envelope aig,_;/| is the screened the susceptibility function quite well using only a few such
Coulomb potential in Fourier representatiomn,is Planck’s oscillators. Therefore, this approach could be called a few-
constant divided b, andy;, is the dipole transition elementsoscillator approximation for the semiconductor gain medium.
which are obtained through the bandstructure calculation. It is important to point out that for many applications it
To obtain the linear susceptibility function, (1) and (2) areuffices to have only one such Lorentzian oscillator plus
solved in Fourier domain. Under the Radpproximation [5], the “background” absorption and index. An example for this
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approximation is shown in Fig. 1 where gain and index spectraNext we derive an equation for the total carrier density. This
for bulk GaAs, calculated from the microscopic theory fois achieved by summing thieresolved density equations (2)
three different densities, are plotted (solid lines) together wittsing (5). This leads to

the spectra of the approximations using (4) (dashed lines). The AN 8 aN nJ

physical meaning of this one oscillator is very simpig:(V) 7 o N o =7 N+ ow + ﬁ

essentially determines the strength of the Lorentziar{V) (Po+ P+ )E
determines the bandwidth of the spectrum which changes with "
density.é; (N) represents the gain peak shift with the density, —(Po+ P+ )E] (8)

as is obvious from Fig. 1. We see that using one oscillator Where we have added the carrier diffusion term with diffusion
basically capture all of the essential features of the gain/indggnstant Dy in the lateral direction(z). The parameters

spectra. Our next step is to establish a set of equations USING. ¢ w are respectively, the quantum efficiency, pumping

this approximated susceptibility(V,w) as given by (4). current, electron charge, and active region thickness. In deriv-
ing (8), we have used the following relations:
IV. THE EFFECTIVE BLOCH EQUATIONS (EBE’S) 1 nJ
Though most of the calculations in this paper are concerned V Z Aok = ew ©
with the case of one oscillator, we will construct our model szlk—k’lpzpk’ — Zvlk’—klpkpZ'- (10)
for the general case of multiple oscillators. One reason is that, [, P

?t the_ higher excitation of the QW ”.‘Ed'”m' the transmonﬁ]e corresponding equation for the laser field amplitude is
involving the second subband can be important, so that a g Ptten as

spectrum with two peaks may appear. In this case, a single o )
oscillator will definitely not be enough to approximate the oF _ ¢ O°FE  ng OF _ KT (Po+ P+ (11)

gain spectrum. 8z 2K 9z ¢ 9t  2ee

To construct our model equations, we note that, by obtainigghere ng is the group index and we also introduce the
the gain and refractive index spectra for a given semiconductnfinement factot” in (11).
Structgre in the |aSt SeCtlon, we haV.e aCtua”y SO|Ved]_I;he. Equations (7), (8), and (11) form the basic set of equations
equations (1). This fact together with our parameterizatigr our model. These equations contain density-dependent

means that we have the following relation: parameters which must be obtained from the independent
1 calculation of gain and index spectra, or from experimental

v > mpk=Po+ P+ Pyt (5) measurements.
k For a given laser system, our first step is to parameterize

éhe susceptibility function using (4). The simplest way of

where Fy, Py, --- are the polarizations corresponding to the . " . .
individual Lorentzians, which we obtain by constructing thel‘?"JItISfyIng (4) IS to do a_best_ﬂt of th_e actually galculated
Eourier components?j(w) through the relation Xx(w, N) for a given density using the right-hand side of (4)

as a fitting function. Such fittings for a range of densities offer

Py = coesxo(N)B(w), density dependence of the function(NV),';(NV), 6,;(N),
Polo) = (N B and xo(&N). In Fig. 2, we show the density dependences of
i) = coax; (N, w) (w) these functions. One remarkable thing to note is that the width
coaAj(N)E(w) j=1,2--- (6) of the Lorentzian, which corresponds directly to the gain band-

- iCi(N)+ 60 +w—6;(N) width? in the case of single oscillator approximation, is quite

" . , , large. The corresponding time constant changes approximately
where quantities with arepresent their Fourier transforms. Ifs. )1, 5 10 3 8 for densities between 10%4/m? and 5

we perform the inverse Fourier transform of (6), we obtain ., 10 /m?, which is ten to twenty times smaller than the

dP;(t) individual polarization decay time. We will discuss this further
ﬁ ={=L;(N) +[do — 6;(N)|}P;(2) when comparing with other models in Section VI.
—icoe, A;(IN)E(t), j=1,2- ) To deal with those density-dependent functions (“parame-

ters”) that appear in (7), (8), and (11), we note that the density

while for (5 = 0) we havePy(N) = epesxo(N)E(t), because dependence of these parameters could be well approximated
no frequency dependence @f(\V) is assumed. It is important by linear functions of density within a certain density range,
to note that, in performing the Fourier transformation, we ha@$ can be seen from Fig. 2. This allows us to have an explicit
treated density-dependent functios;(IV), 8;(N), A;(N), Set of equations wh|ph is useful whep doing certain analyses.
ando(V) as if they were independent of time. In fact this i$n humerical simulation, however, it is rather straightforward
not the case, because these functions depend on a time-var{ghgse rational function fits for these functions. Equations (7),
density. However, this is still a good approximation as lon@®). and (11) with parameters given as rational functions of
as carrier density changes much more slowly compared to ##nsity can then be quite efficiently solved. Equations (7), (8),
inverse gain bandwidth. This is obviously true in a typica@nd (11), for the case of single oscillator without the lateral
laser. For very strong and short pulses, this may not be &see footnote 1.

good assumption. 3See footnote 1.
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0.06 the energy of the pulse will grow quite large so that carrier
2 004t : density varies significantly, and because plasma heating may
Z: 0.02 /Xﬁ»*w”xwx******%”, become important. The application of the present model to
0.00 the broad-area lasers and MOPA will be presented elsewhere
0.40 [23]. In this section, we consider pulse propagation in a bulk
g ggg W%*M%****W GaAs amplifier. The parameters we use are standard ones for
o 010 f’*’e GaAs. The corresponding microscopic theory was presented
0.00 in Section lll. Pulse propagation using the full microscopic
0.10 ] theory has been extensively studied elsewhere [30]-[32].
:\_a_ g‘gg: %,MM* For the electric field amplitude, we solve the propagation
= -0.05 \’\‘f’“ i equation for the laterally plane wave with a transverse confine-
-0.10 ment factor of 0.2 for a bulk medium. The medium is modeled
8:1 S, ] by (1) and (2). Scattering processes are approximated by time
3 0.1 4W*******wﬂ ] constants of 80, 170, and 300 fs for carrier—carrier, and elec-
0.12% i tron—phonon, and hole—phonon scatterings, respectively. The
0.10 plasma temperature is extracted from the actual distribution
02 function obtained. Fig. 4 shows a comparison of propagations
R of a Sech-shaped pulse using the full model [(1), (2), (11)] and
00 the EBE’s [(7), (8), and (11)] with an initial pulse FWHM of

20 ps. Fig. 4(a) shows two sets of almost indistinguishable
0 1 2 3 4 5 ; . ; . .
N (X10%/m?) pulse profiles, with the slightly lower profile representing the

propagation of the full microscopic model. The medium is

Fig. 2. Plotted are “parameters” of the Lorentzian oscillator and the regl;.: . . . 8 _ 3
(xo,r) and imaginary(xo,;) parts of the “background” susceptibility. Starseﬁ.h“a”y inverted at a carrier den5|ty of & 10** cm~?. The

are calculated using the microscopic theory, while solid lines are fits to tHaitial pulse amplitude is 6 meV which corresponds to roughly
rational functions that are used in numerically solving the EBE'’s. the saturation intensity [30]-[32] for this pulsewidth. As we
can see, the pulse is not significantly amplified, but mostly
reshaped. We observe good agreement for reshaping of the
two profiles, despite the plasma temperature profile plotted
in Fig. 4(b) with a temperature rise above lattice temperature
(300 K) of about 10 K. We also compare an initially very weak
pulse of similar width. The agreement is consistently as good
as shown in Fig. 4. To see when the present model will fail, we
N (X10%/m?) reduce the width of the pulse to 2 ps. We start from an initial
Fig. 3. Linewidth enhancement facton) obtained using the fitted suscep-@Mmplitude as weak as 0.1 meV. Fig. 5(a) shows the final stage
tibility function at a fixed frequency 30 meV below the bare bandgap of thef the pulse propagation. At the earlier stage the agreement
GaAs. is very good. We see, however, that the two profiles start
to diverge as the pulse propagates, with the peak amplitude

derivatives, are similar in form to the standard Maxwell-BlocAf the EBE model growing faster. In Fig. 5(b), we see the
equations for the two-level system. The essential differenBésma temperature increases up to around 20 K over the
lies in the density dependence of the parameters plotted|d#ice temperature. This plasma temperature rise is responsible
Fig. 2. for the earlier saturation of pulse predicted by the full model.
To conclude the presentation of our model, we point out In general, what we see are the two competing effects that
that, since we now have an expression for the Susceptibi"%ﬂd to pulse saturation. The first one is the familiar one due
expressed as function of density-dependent parameters, mighgarrier depletion, determined by the pulse energy, roughly
important quantities such as differential gain and the linewidgiven by peak intensity times the pulsewidth. The second
enhancement factor [28], [29}x) can be written explicitly. one is due to plasma heating. Which of the two appears first
Especially in the case of the single Lorentzian, the linewidiiith the propagation depends on the initial pulse intensity and
enhancement factor can be expressed in a rather simple fowiflith, and the particular medium properties. In our present
F|g 3 shows an examp|e of at a fixed frequency near gainEBE model, the effect of plasma heating is not included.
peak as a function of carrier density using our parameterizely the first saturation mechanism can appear. In the first
x. This value is consistent with thevalues given in [4]. This case (Fig. 4), the pulse energy reaches a saturation value
should, of course, be expected, since the parametegizec before plasma temperature rises too high. The saturation of

good approximation of that computed microscopically. peak intensity then halts the plasma heating. In the second
case (Fig. 5) the opposite happens. Before the pulse energy

reaches the saturation value, the plasma temperature is already

significantly elevated above lattice temperature and gain is
Picosecond pulse propagation in a semiconductor amplifigpleted. The pulse begins reshaping as predicted by the full

provides a stringent test of the EBE model, both becaus®del, while the EBE model shows a further amplification

V. APPLICATION TO PICOSECONDPULSE PROPAGATION
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Fig. 5. Same as Fig. 4, but for a shorter pulse of 2 ps. The thick line in (a)
shows the result of the EBE model. The initial pulse intensity is very weak,
but only the later stage of propagation is shown in the figure.

600

T-300(K)

(b)
Fig. 4. Pulse propagation in a bulk inverted medium. (a) Pulse intensaﬁ divided mtp two catggorles: those E_lddlng_ dlspersm_n te_rms
profiles and (b) the corresponding plasma temperature elevation. The two pE-[8] to the field equations and those including a polarization
profiles are almost indistinguishable, with the slightly lower one representirégquation [9]_[11]_ With the exception of [10]7 the density

the results of the full model. . . . . . .
dependence of gain and refractive index dispersions is not

included in these models. The basic idea of [6]-[8] is to expand

due to the absence of the plasma heating mechanism. Fig@ |inear gain and refractive index in the frequency domain
our experience, we can conclude that the two models agig¢to second order. The frequency-dependent gain is Fourier
well for a plasma temperature rise roughly within 10 K. In gansformed to time domain, leading to an equation for the
typical laser, the time scale involved should be larger thanfigig amplitude containing the second-order time derivative.
picosecond, and the peak intensity is much lower. Therefoggs course, such a Taylor expansion of the susceptibility in
the EBE model should be a useful model for the broad-arggrier space can be applied to our expression yoas
lasers and MOPA's. given in (4), so the coefficients in the equations in [6][8],

It is to be emphasized that the computation time is drasfian pe derived from the values of the parameters that we
cally reduced in the EBE model compared to the full SBE'gaiculate. However, the derived values of those coefficients
In the EBE model, only a few variables need to be calculatg|| pe density dependent. This dependence was not treated in
at each spatial point. However, at first glance, it may app&gir models. This was not a problem for simulations of pulse
that the wide gain bandwidth, as reflected by the large valyg,agation where the pulse energies were low enough so that
of I'y(IV), will still require very small time steps. This can,e gensity did not vary a great deal. For high energy pulses, or

be avoided by using a semi-implicit scheme based on the ga¢ simulation of high power lasers, the density variation can
used in [33]. This method would not be practical for the SBE, quite large. The comparison in [7] and [8] to experiments

system, since the large (200 by 200, say) linear systems woldd,ery impressive and shows that for subpicosecond pulses

have to be solved at each step for each spatial point. USifgs hecessary to include the effects of plasma heating. This
this scheme in the EBE model, the step size is not limitgd jncjyded in their model via a linear dependence of gain

by thel';, but by the dynamics of the electrical field. In OUlgn temperature, with the temperature driven by free-carrier

simulation of_the above. pulse propagations, the S,BE SySt‘?slr[‘)]sorption, stimulated emission, and two-photon absorption.
typically requires CPU time 1000 times those required by ﬂ?ﬁ addition, the gain and refractive index spectra in their

EBE's. models are expanded in Taylor series up to second order.
This is very often a good approximation for many practical
applications, but to capture asymmetrical gain spectra, higher
We are aware of a few other models proposed recentlyder expansion is necessary. This leads to higher order time
[6]-[11] to describe semiconductor lasers and amplifiers witterivatives. This should be compared with the necessity to
inclusion of gain and/or index dispersions. These models catlude more Lorentzian oscillators (thus more polarization

VI. COMPARISON TO THEOTHER MODELS
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variables) in our approach. In both cases, the order of tB&8BE’'s are formally very similar to the Bloch equations of
system is increased. However, the Taylor expansion approdieh two-level atoms. This makes the equations more easily
is less suited to dealing with the QW medium at higheaccessible by researchers without detailed knowledge of many-
densities. In that case, the higher QW subbands are involveddy theory. Finally we want to emphasize that the procedure
so that the gain spectrum can show two peaks. Of course, @ay be equally well applied to experimentally measured gain
arbitrary smooth shape can be approximated with a sufficiemid index spectra.
number of terms, but high-order time derivatives will lead to Perhaps the most important extension of this work now
systems of equations that are numerically more intractabl;nderway is the inclusion of the effects of plasma heating.
The approximation using multiple Lorentzians is more natur@le have seen that the EBE’s do an excellent job of modeling
in this setting and is numerically less difficult. pulse propagation in semiconductor media provided the plasma

In another development, two-level-like Bloch equationseating is not a strong factor in gain saturation (see Figs. 3 and
were used for modeling semiconductor lasers [9]-[11]. ). As was mentioned in the derivation of the EBE’s, we can
deriving these models, the authors of [9] and [11] used aake into account not only the effects of density dependence
approximation that led to a single polarization equation withaf the susceptibility, but also the effects of the plasma heating.
relaxation rate of the individudl-resolved polarization. This is In order to include this effect in a self-consistent fashion, it is
equivalent to the homogeneous-broadening limit in gas lasefiecessary to sum tmh2k2/(2m) to obtain an equation for
Unfortunately, this is a poor approximation for semiconductehe kinetic energy, in much the same way thatwas summed
medium which is in the domain of the inhomogeneous limib produce (8) (cf. [24]-[27]). In this way, the present method
with a very large inhomogeneous linewidth (the gain bandan be extended to describe the propagation of shorter and
width), as can be seen in Fig. 1. As we see from Fig. 2, tiiggher energy pulses.
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